(Bi-Monthly)

Peer-Reviewed Journal

Impact factor:0.948

Chief-Editor

Uhale Amol Baban

PEER-REVIEWED INTERNATIONAL

[Editorial/Head Office: 108, Gokuldham Society, Dr.Ambedkar chowk, Near TV Towar, Badlapur, MSief

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

q-ANALOGUE OF THE SHIFT OPERATORS AND PSEUDO-POLYNOMIALS OF FRACTIONAL ORDER

Mohammad Asif¹ and Anju Gupta²

Department of Mathematics Kalindi College University of Delhi New Delhi-110008, India.

Abstract: The present paper envisage the q-analogues of the operators, results determined by Dattoli et.al, to deal with the families of pseudo-Kampé de Fériet polynomials, which can be viewed as the complement for the theory of q-fractional derivatives and q-partial fractional differential equations of evolutive type. We show that these families allow the possibility of treating a large variety of q-exponential operators providing generalized fractional forms of q-shift operators.

Keywords: q-Calculus, q-Hermite-Kampé de Fériet (or Gould-Hopper) polynomials; q-Bessel functions; q-Exponential operators; Fractional calculus.

2000 Mathematics Subject Classification: 33D05, 33C45, 47G20, 26A33.

1. Introduction

In this paper, the following notations shall be used (see[9], [10]) for |q| < 1 we have

$$(a;q)_{\infty} = \prod_{j=0}^{\infty} (1 - aq^j)$$
 (1.1)

$$(a;q)_n = \frac{\Gamma_q(a+n)}{\Gamma_q(a)}, \qquad (1.2)$$

and for an arbitrary complex number n, we have

$$(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}},\tag{1.2a}$$

¹mohdasiff@gmail.com.

²anjjuguptaa@rediffmail.com.

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

in particular if $n = 1, 2, \dots$, we get

$$(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$$
(1.2b)

In 1979, Cigler [2], defined the sum of q-numbers in the following manner

$$[\alpha]_q \oplus_q [\beta]_q = [\alpha]_q + q^{\alpha} [\beta]_q = \frac{1 - q^{\alpha}}{1 - q} + q^{\alpha} \frac{1 - q^{\beta}}{1 - q} = \frac{1 - q^{\alpha + \beta}}{1 - q} = [\alpha + \beta]_q \quad (1.3)$$

The q-derivative is defined as

$$D_{q}f(x) = \begin{cases} \frac{f(x) - f(qx)}{(1 - q)x}, & x \neq 0, \\ f'(0), & x = 0. \end{cases}$$
 (1.4)

its nth iterate is written as

$$D_q^n f(x) = D_q^{n-1}(D_q f(x)),$$

for $n=1,2,\cdots$, where D_q^0 denotes the identity operator. q-Gamma function is defined (see[9], [10]) as

$$\Gamma_q(x) = \int_0^\infty u^{x-1} e_q^{-u} d_q u = \frac{(q;q)_\infty}{(q^x;q)_\infty} (1-q)^{1-x}, \quad 0 < q < 1$$
 (1.5)

The q-Exponential function is defined as follows

$$e_q^x = \sum_{r=0}^{\infty} \frac{x^r}{|r|_q!}. \tag{1.6}$$

In what follows, we consider analytic function f(x) so that the corresponding q-analogue of Taylor expansion

$$f(x+\lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k}{[k]_q!} \left[\frac{d}{dx} \right]_q^k f(x), \tag{1.7}$$

converges to corresponding value of f in a suitable neighborhood of x.

In 2003, Dattoli et al. [3] discussed the exponential operators, In the present paper we find the q-analogue of the exponential operators, obtained by Dattoli et. al [3]

$$\widehat{E}_{q}^{m} = e_{q}^{\lambda \left[\frac{\partial}{\partial \pi}\right]_{q}^{m}} \tag{1.8}$$

In particular when m=1, it reduces to the ordinary q-shift operator, while for m=2 it can be identified with the q-operatorial version of the Gauss transform. Let us write q-Taylor transformation, we have

$$e_q^{\lambda \left[\frac{\partial}{\partial x}\right]_q} f(x) = \sum_{r=0}^{\infty} \frac{\lambda^r \left[\frac{\partial}{\partial x}\right]_q^r}{[r]_q!} f(x) = f(x+\lambda)$$
 (1.9)

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

Let us write q-analogue of the identity [19], we have

$$e_q^{b^2} \ = \ \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2 + 2b\xi} d_q \xi, \label{eq:equation_eq}$$

we find

$$\begin{split} e_q^{\lambda \left[\frac{\partial^2}{\partial x^2}\right]_q} f(x) &= \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2 + 2\sqrt{\lambda} \xi \left[\frac{\partial}{\partial x}\right]_q} f(\xi) d_q \xi \\ &= \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2} f(x + 2\xi\sqrt{\lambda}) d_q \xi \end{split}$$

or

$$e_q^{\lambda \left[\frac{g^2}{4\pi^2}\right]_q} f(x) = \frac{1}{2\sqrt{\pi\lambda}} \int_{-\infty}^{\infty} e_q^{-\frac{(\pi-\xi)^2}{4\lambda}} f(\xi) d_q \xi.$$
 (1.10)

after a suitable change of variables.

Both the aforementioned eqs. (1.9) and (1.10) are solution of the q-partial differential equation:

$$\begin{cases}
\left[\frac{\partial}{\partial \lambda}\right]_q F(x,\lambda) = \left[\frac{\partial}{\partial x}\right]_q^m F(x,\lambda), \\
F(x,0) = f(x), \quad m = 1, 2.
\end{cases} \tag{A}$$

In case when m > 2, the exponential operator $\widehat{E}_q^m = e_q^{\lambda \left[\frac{\theta}{2\pi}\right]_q^m}$ provides formal solution for the generalized heat equation. Therefore, we emphasize that the q-analogue of [3] Hermite-Kampé de Fériet polynomials [1] of the type

$$e_q^{\lambda \left[\frac{\partial}{\partial x}\right]_q^m} x^n \ = \ \sum_{r=0}^\infty \frac{\lambda^r}{[r]_q!} \left[\frac{\partial^{mr}}{\partial x^{mr}}\right]_q x^n$$

$$= [n]_q! \sum_{r=0}^{[\frac{n}{2}]} \frac{x^{n-2r}y^r}{[n-2r]_q![r]_q!} = H_n^{(m)}(x,y;q) = g_n^m(x,y;q)$$

or equivalently the q-analogue GouldHopper polynomials [13, p. 76, eq. (1.9) (6)]:

$$g_n^m(x,y;q) \ = \ \sum_{r=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \frac{[n]_q!}{[r]_q![n-2r]_q!} x^{n-2r} y^r \ = \ H_n^{(m)}(x,y;q)$$

are a solution of

$$\begin{cases} \left[\frac{\partial}{\partial \lambda}\right]_q F(x,\lambda) &= \left[\frac{\partial}{\partial x}\right]_q^m F(x,\lambda), \\ F(x,0) &= x^n. \end{cases}$$
(A')

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

or in other words[12] and [13]

$$e_q^{\lambda \left[\frac{\partial}{\partial x}\right]_q^m} x^n = H_n^{(m)}(x, y; q) \tag{1.11}$$

This last result is particularly important, since it allows the conclusion that if f(x) is an analytic function defined by the series expansion

$$f(x) = \sum_{n} c_n x^n$$

then, by q-analogue of the Taylor Theorem, we write

$$e_q^{\lambda \left[\frac{\partial}{\partial x}\right]_q^m} f(x) = \sum_n c_n H_n^{(m)}(x, y; q). \tag{1.12}$$

The polynomials $H_n^{(m)}(x, y; q)$ will said to be the q-analogue of the Hermite polynomials of index n and order m.

Particular case: When $q \mapsto 1$, the equations of this section give raise to the eqs. given in the first section of Dattoli et al. [3].

2. Generalized q-Exponential Operators

In 2003, extensive uses of exponential operators were used by Dattoli et al. [3]. Let us see the q-analogue of the exponential shift operators used in [12] and [13], which play crucial role in the q-analogue of the problems concerning in the pure and applied Mathematics [4].

$$\widehat{E}_{q} = e_{q}^{\lambda p(x) \left[\frac{d}{dx}\right]_{q}}$$
(2.1)

The properties of the generalized q-shift operator are similar to that of discussed in ref. [16-18] and their importance for the solution of generalized q-difference equations are similar to that of stressed in ref [5]. The action of \widehat{E}_q on a given function f(x) has been shown to be provided by [12] and [13]

$$\widehat{E}_q f(x) = f[F^{-1}(\lambda + F(x))],$$
 (2.2)

where

$$F(x) = \int^{x} \frac{d_{q}\xi}{p(\xi)} \text{ or } \left[\frac{d}{dx}\right]_{q} F(x) = \frac{1}{p(x)} \text{ or } p(x) \left[\frac{d}{dx}\right]_{q} F(x) = 1 \qquad (2.3)$$

defines the associated characteristic function of the generalized q-shift operator and $F^{-1}(\cdot)$ is its inverse. The proof of the above identity can be easily given, by Taylor Theorem noting that

$$\widehat{E}_q F(x) = F(x) + \lambda$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY- 2014

ISSN 2278-5655

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

only if [12] and [13]

$$\left[p(x) \left[\frac{d}{dx} \right]_q, F(x) \right] \ = \ 1,$$

where $[\cdot, \cdot]$ denotes commutation brackets, that is:

$$p(x) \left[\frac{d}{dx} \right]_{\sigma} F(x) = 1.$$

More generally, we can always write [8] and [9]

$$\widehat{E}_q f(x) = f[F^{-1}(\lambda + F(x))],$$

It is evident that for p(x)=1, \widehat{E}_q reduces to the ordinary shift operator, when we put p(x)=x we find $F(x)=\ln_q(x)$ and $F^{-1}(x)=e_q^x$, we have

$$e_q^{\lambda x \left[\frac{d}{d\pi}\right]_q} f(x) = f(e_q^{\lambda} x) \tag{2.4}$$

It is evident that the q-analogue of the operators [12] and [13]

$$\widehat{\mathcal{T}}_{x;q} = p(x) \left[\frac{d}{dx} \right]_{q} \tag{2.5}$$

can be viewed as an ordinary q-derivative, although F(x) is a function, $[F(x)]^n$ behaves, under the action of $\widehat{\mathcal{T}}_{x;q}$, as an ordinary monomial, we obtain indeed

$$\widehat{T}_{x;q}[F(x)]^n = [n]_q[F(x)]^{n-1},$$
(2.6)

we can take advantage from this trivial property to discuss the rule associated with the use of operators like

$$\widehat{E}_q^m = e_q^{\lambda \left(\widehat{T}_{w,q}\right)^m} = e_q^{\lambda \left(p\langle x\rangle\left[\frac{d}{dx}\right]_q\right)^m}, \tag{2.7}$$

for m. integer or real.

According to the conclusion of the introductory section and to these last relations, we can introduce the polynomials.

$$h_p^{(m)}(x, y; q) = H_p^{(m)}(F(x), y; q),$$
 (2.8)

which satisfy the recurrences

$$\left[F(x) \oplus [m]_q y \left[\frac{\partial}{\partial x} \right]_q^{m-1} \right] H_n^{(m)}(F(x), y; q) \ = \ [n]_q! \sum_{r=0}^{\left[\frac{n+1}{m}\right]_q} \frac{[n+1-mr]_q [F(x)]^{n+1-mr}}{[n+1-mr]_q!} \frac{y^r}{[r]_q!}$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY- 2014

ISSN 2278-5655

$$\begin{split} & \oplus [m]_q \left[[n]_q! \sum_{r=1}^{[\frac{n}{m}]} \frac{[F(x)]^{n+1-m(r+1)}}{[n+1-m(r+1)]_q!} \frac{[r+1]_q y^{r+1}}{[r+1]_q!} \right] \\ & = \left[n \right]_q! \sum_{r=0}^{[\frac{n+1}{m}]} \frac{[n+1-mr]_q [F(x)]^{n+1-mr}}{[n+1-mr]_q!} \frac{y^r}{[r]_q!} \oplus [m]_q \left[[n]_q! \sum_{r=0}^{[\frac{n+1}{m}]} \frac{[F(x)]^{n+1-mr}}{[n+1-mr]_q!} \frac{[r]_q y^r}{[r]_q!} \right] \\ & = \left[n \right]_q! \left[\sum_{r=0}^{[\frac{n+1}{m}]} \frac{[F(x)]^{n+1-mr}}{[n+1-mr]_q!} \frac{y^r}{[r]_q!} \right] \left\{ [n+1-mr]_q \oplus [m]_q [r]_q \right\} \end{split}$$

The product of q-numbers is defined [8; eq.(324)] by $[a]_q = e_q^{\ln_q(a)}$, this power function allows to write

$$[m]_q[r]_q = [mr]_q$$

$$= [n+1]_q[n]_q! \sum_{r=0}^{\left[\frac{n+1}{m}\right]} \frac{y^r [F(x)]^{n+1-mr}}{[r]_q! [n+1-mr]_q!}$$

or

$$\left[F(x) \oplus [m]_q y \left[\frac{\partial}{\partial x}\right]_q^{m-1}\right] H_n^{(m)}(F(x),y;q) \ = \ H_{n+1}^{(m)}(F(x),y;q),$$

by using the eq. (2.8), we have

$$\begin{bmatrix}
F(x) \oplus [m]_q y \left(\widehat{\mathcal{T}}_{x|q}\right)^{m-1} \end{bmatrix} h_n^{(m)}(x, y; q) = h_{n+1}^{(m)}(x, y; q), \\
\text{and} \\
\widehat{\mathcal{T}}_{x;q}[h_n^{(m)}(x, y; q)] = [n]_q h_{n-1}^{(m)}(x, y; q).$$
(2.9)

Clearly $h_n^{(m)}(x, y; q)$ are q-functions satisfying q-polynomial type identities and will therefore be called pseudo q-analogue of H.K.d.F..

It becomes also evident that identities of the following type

$$\left[F(x) + 2y\left(\widehat{\mathcal{T}}_{x;q}\right)\right]^n = \sum_{s=0}^n \begin{bmatrix} n \\ s \end{bmatrix}_q H_{n-s}(F(x), y; q) \left(2y(\widehat{\mathcal{T}}_{x;q})\right)^s. \tag{2.10}$$

We show that eq. (2.10) follows from the Weyl identity. Note that since F(x) and $2y(\widehat{\mathcal{T}}_{xy})$ do not commute, therefore the use of the Newton binomial formula is not allowed. Multiplying the left-hand side of eq. (2.10) by $\frac{t^n}{[n]_q!}$ and summing over n, we find

$$\sum_{n=0}^{\infty} \frac{t^n}{[n]_q!} \left[F(x) + 2y \left(\widehat{\mathcal{T}}_{x;q} \right) \right]^n = e_q^{t(F(x) + 2y\widehat{\mathcal{T}}_{x;q})},$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

by using the Weyl identity, where $\widehat{P}=tF(x)$ and $\widehat{Q}=2yt\widehat{\mathcal{T}}_{xy}$

since

$$[[\widehat{P},\widehat{Q}],\widehat{P}] = [[\widehat{P},\widehat{Q}],\widehat{Q}] = 0$$

further noting that

$$[\widehat{P},\widehat{Q}] = \widehat{P}\widehat{Q} - \widehat{Q}\widehat{P} = -2yt^2,$$

and

$$e_q^{\widehat{\mathcal{P}}+\widehat{Q}} \ = \ e_q^{\widehat{\mathcal{P}}} e_q^{\widehat{Q}} e_q^{-\frac{1}{2}[\widehat{\mathcal{P}},\widehat{Q}]}$$

therefore, we can write

$$e_{\sigma}^{t(F(x)+2yt\widehat{T}_{\pi;q})} \ = \ e_{\sigma}^{tF(x)+yt^2}e_{\sigma}^{2yt\widehat{T}_{\pi;q}}$$

By expanding the q-exponential function, we obtain

$$\sum_{n=0}^{\infty} \frac{t^n}{[n]_q!} H_n(F(x), y; q) \sum_{s=0}^{\infty} \frac{t^s}{[s]_q!} (2y \widehat{\mathcal{T}}_{x;q})^s = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \frac{t^{n+s}}{[n]_q! [s]_q!} H_n(F(x), y; q) (2y \widehat{\mathcal{T}}_{x;q})^s.$$

Setting k = n + s and inverting summations, we find

$$\sum_{k=0}^{\infty} \frac{t^k}{[k]_q!} (F(x) + 2y \widehat{\mathcal{T}}_{x;q})^k = \sum_{k=0}^{\infty} \frac{t^k}{[k]_q!} \sum_{s=0}^k \begin{bmatrix} k \\ s \end{bmatrix}_q H_{k-s} (F(x), y; q) (2y \widehat{\mathcal{T}}_{x;q})^s.$$

Therefore, (2.10) follows from the comparison of the coefficients of $\frac{t^k}{[k]_q!}$ in the last equation. By using the eq. (2.8) we find the following result

$$\left[F(x) + 2y\left(\widehat{\mathcal{T}}_{x;q}\right)\right]^n = \sum_{s=0}^n (2y)^s \begin{bmatrix} n \\ s \end{bmatrix}_q h_{n-s}^{(2)}(x,y;q) \left(\widehat{\mathcal{T}}_{x;q}\right)^s \tag{2.11}$$

and

$$e_q^{y(\widehat{T}_{x;q})^m} f(F(x)) = e_q^{y(\widehat{T}_{x;q})^m} f(F(x)) = f(F(x) + [m]_q y \left(\widehat{T}_{x;q}\right)^{m-1}) e_q^{y(\widehat{T}_{x;q})^m}$$
(2.12)

which realize an extension of the ordinary Burchnall and Crofton [5, 16] identities valid for p(x) = 1.

It is evident that all the wealth of properties of H.K.d.F. can be extended fairly straightforwardly to the functions $h_n^{\langle m \rangle}(x,y;q)$. The use of the previously discussed rules may greatly simplify the application of different types of exponential polynomials.

To give some examples, we note e.g. that

$$e_q^{y[x\frac{\partial}{\partial x}]_q^m}(x^n) = e_q^{y[x\frac{\partial}{\partial x}]^m} e_q^{n\ln_q(x)} = \sum_{r=0}^{\infty} \frac{n^r}{[r]_q!} H_r^{(m)}(\ln_q(x), y; q),$$
(2.13)

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

and since

$$\sum_{r=0}^{\infty} \frac{t^r}{[r]_q!} H_r^{(m)}(x, y; q) = \sum_{r=0}^{\infty} \frac{t^r}{[r]_q!} \sum_{k=0}^{\left[\frac{r}{m}\right]} [r]_q! \frac{x^{r-mk}y^k}{[r-mk]_q![k]_q!} = \sum_{r=0}^{\infty} \sum_{k=0}^{\left[\frac{r}{m}\right]} \frac{x^{r-mk}y^k t^r}{[r-mk]_q![k]_q!} \\
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(xt)^n}{[n]_q!} \frac{(yt^m)^k}{[k]_q!} = \sum_{n=0}^{\infty} \frac{(xt)^n}{[n]_q!} \sum_{k=0}^{\infty} \frac{(yt^m)^k}{[k]_q!} = e_q^{xt} e_q^{yt^m}$$

or

$$\sum_{r=0}^{\infty} \frac{t^r}{[r]_q!} H_r^{\langle m \rangle}(x, y; q) = e_q^{xt+y\ell^m}$$
(2.14)

or, equivalently,

$$\sum_{r=0}^{\infty} \frac{t^r}{[r]_q!} g_r^{(m)}(x, y; q) = e_q^{xt+yt^m}, \tag{2.15}$$

by replacing t and x with n and $\ln_q(x)$ respectively. For the aforementioned Gould-Hopper polynomials [17, p. 86, eq. (1.11) (27)], we find that

$$e_q^{y\left(x\left[\frac{\theta}{\theta\pi}\right]_q\right)^m}(x^n) = x^n e_q^{y\eta^n}.$$
 (2.16)

It is now evident that if f(x) is specified by any analytic function $(f(x) = \sum_{n} c_n x^n)$, then

$$e_q^{y\left(x\left[\frac{\partial}{\partial x}\right]_q\right)^m} f(x) = \sum_n c_n x^n e_q^{yn^m}, \tag{2.17}$$

provided that the last series is convergent. Further comments on this last result will be presented in the concluding section(4).

A further example of q-exponential operator is provided by the case

$$p(x) = (x-b)^2$$
, $F(x) = \int_0^x \frac{d_q \xi}{(\xi - b)^2} = -\frac{1}{(x-b)}$,

for which we find

$$e_q^{y\left[(x-b)^2\left[\frac{\partial}{\partial \pi}\right]_q\right]^2} \left[\frac{x-b}{x}\right] = e_q^{y\left[(x-b)^2\left[\frac{\partial}{\partial \pi}\right]_q\right]^2} \left[\frac{x-b}{x}\right]$$

$$= e_q^{y\left[(x-b)^2\left[\frac{\partial}{\partial \pi}\right]_q\right]^2} \left[\frac{1}{1+\frac{b}{x-b}}\right]$$

$$= e_q^{y\left[(x-b)^2\left[\frac{\partial}{\partial \pi}\right]_q\right]^2} \sum_{s=0}^{\infty} \left(-\frac{b}{x-b}\right)^s$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

$$= \sum_{s=0}^{\infty} (b)^{s} e^{y \ln(a) \left[(x-b)^{2} \left[\frac{\theta}{\theta \pi} \right]_{q} \right]^{2}} \left(-\frac{1}{x-b} \right)^{s}$$

let $-\frac{1}{x-b} = t$, therefore $\left[\frac{\partial t}{\partial x}\right]_q = \frac{1}{(x-b)^2}$ and $\left[\frac{\partial}{\partial x}\right]_q = \left[\frac{\partial}{\partial t}\right]_q \left[\frac{\partial t}{\partial x}\right]_q = \left[\frac{1}{(x-b)^2}\right]_q \left[\frac{\partial}{\partial t}\right]_q = (x-b)^2 \left[\frac{\partial}{\partial x}\right]_q$

$$\sum_{s=0}^{\infty} (b)^{s} e_{q}^{y \left[\frac{\theta}{\theta s}\right]_{q}^{2}} t^{s} = \sum_{s=0}^{\infty} (b)^{s} H_{s}(t, y; q)$$

or

$$e_q^{y\left[(x-b)^2\left[\frac{\theta}{\theta \pi}\right]_q\right]^2}\left[\frac{x-b}{x}\right] = \sum_{s=0}^{\infty} (b)^s H_s\left(-\frac{1}{x-b}, y; q\right). \tag{2.18}$$

Particular case: The results determined by Dattoli et al. [3; in 2 section] can be obtained by taking limit $q \mapsto 1$, into the equations of this section.

3. q-Analogue of the Exponential Operators of Fractional Order

In this section we will discuss fractional shift operators of the type

$$\widehat{E}_{q}^{\mu} = e_{q}^{\left(p(x)\left[\frac{d}{d\pi}\right]_{q}\right)^{\mu}} \tag{3.1}$$

with p(x) = 1 and μ any real number such that $0 < \mu < 1$.

Before entering into the main body of the discussion, we recall that q-analogue of the Riemann-Liouville derivative of fractional order m is defined by (see [15]; see also [4, p. 286, eq. (5.1) (8)])

$$\left[\frac{d}{dx}\right]_{q}^{\nu} f(x) = \frac{1}{\Gamma_{q}(m-\nu)} \left[\frac{d^{m}}{dx^{m}}\right]_{q} \int_{0}^{x} (x-t)^{m-\nu-1} f(t) d_{q} t, \tag{3.2}$$

where m is a positive integer such that $m-1 < \nu < m$.

Accordingly, we get

$$e_q^{\left[\frac{\partial}{\partial x}\right]_q^{\mu}} x^n = H_n^{(\mu)}(x, y; q) \tag{3.3}$$

where $H_n^{(\mu)}(x,y;q)$ are q-analogue of the H.K.d.F. pseudo-polynomials of fractional order, defined by

$$H_n^{(\mu)}(x,y;q) = [n]_q! \sum_{r=0}^{\infty} \frac{x^{n-\mu r} y^r}{\Gamma_q(n-\mu r+1)[r]_q!},$$
 (3.4)

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

whose validity easily be checked by the direct expansion of the operator and by the fact that [15]

$$\left(\left[\frac{d}{dx} \right]_q^{\mu} \right)^k x^n = \left[\frac{d}{dx} \right]_q^{k\mu} x^n = \frac{\Gamma_q(n+1)x^{n-\mu r}}{\Gamma_q(n-\mu r+1)[r]_q!}, \quad (\mu < n+1).$$
 (3.5)

According to the previous discussions $H_n^{\langle \mu \rangle}(x,y;q)$ is the natural solution of q-analogue the fractional Cauchy problem

$$\begin{cases}
\left[\frac{\partial}{\partial y}\right]_q u(x,y) = \left[\frac{\partial}{\partial x}\right]_q^\mu u(x,y), \\
u(x,0) = x^n.
\end{cases} (B)$$

We must underline that the function $H_n^{(\mu)}(x,y;q)$ is an extension of q-analogue the ordinary H.K.d.F. or Gould-Hopper polynomials.

More generally we can solve the problem (B) with the general condition

$$u(x,0) = f(x) = \sum_{n} c_n x^n$$
 (3.6)

according to the following relation

$$u(x,y) = f(x) = \sum_{n} c_n H_n^{(\mu)}(x,y;q).$$
 (3.7)

Clearly, q-analogue of the generalized shift exponential operators of the type, is written as

$$\widehat{E}^{\mu}_{q} = e_{q}^{\left(p(x)\left[\frac{\partial}{\partial x}\right]_{q}\right)^{\mu}}.$$

With this purpose in view, we consider the problem

$$\begin{cases}
\left[\frac{\partial}{\partial y}\right]_q u(x,y) = \left(p(x)\left[\frac{\partial}{\partial x}\right]_q\right)^{\mu} u(x,y), \\
u(x,0) = (F(x))^n,
\end{cases} (C)$$

where

$$F(x) = \int^x \frac{d_q \xi}{p(\xi)}.$$

It is fairly natural to write the solution of (C) as follows:

$$u(x,y) = H_n^{(\mu)}(F(x), y; q)$$
 (3.8)

This last result completes the purposes of the present paper aimed at providing a general framework for the families of q-analogue exponential operators.

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

Particular case: By taking limit $q \mapsto 1$, the eqs. (3.1) to (3.8) reduce to the results due to Dattoli et al. [3; p. 220-221, section 3].

4. Concluding Remarks

In the previous section we have seen that the theory of q-exponential operators can be conveniently complemented by the use of functions satisfying recurrences of quasi monomial nature.

In these concluding remarks we will discuss the introduction of a family of functions which can be viewed as a fairly natural consequence of the so far developed formalism.

We consider the case of logarithmic Bessel functions, whose generating function can be cast in the following form

$$G(x, \vartheta; q) = x^{i \sin_q(\vartheta)} = \sum_{n=-\infty}^{\infty} e_q^{in\vartheta} J_n(\ln_q(x); q),$$
 (4.1)

where $J_n(x)$ denote the first kind cylinder Bessel functions, that is its q-analogue is written as

$$J_n(z;q) = \frac{(q^{n+1};q)_{\infty}}{(q;q)_{\infty}} \left(\frac{1}{2}z\right)^n \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}z^2\right)^k}{(q;q)_k (q^{n+1};q)_k}.$$

It is evident that we can take advantage from the discussion of the previous sections, to consider the following problem

$$e^{y\left(x\left[\frac{\partial}{\partial x}\right]_q\right)^2}x^{i\sin_q(\vartheta)} = e_q^{i\sin_q(\vartheta)\left(\ln_q(x) + 2yx\left[\frac{\partial}{\partial x}\right]_q\right)}.$$
 (4.2)

The q-exponential can be decoupled by means of the Weyl rule

$$e_q^{\widehat{\mathcal{P}}+\widehat{\mathcal{Q}}} = e_q^{\widehat{\mathcal{P}}} e_q^{\widehat{\mathcal{Q}}} e_q^{-\frac{1}{2}[\widehat{\mathcal{P}},\widehat{\mathcal{Q}}]},$$

where

$$[\widehat{P},\widehat{Q}] = \widehat{P}\widehat{Q} - \widehat{Q}\widehat{P},$$

by setting indeed

$$\widehat{P} = i \sin_q(\vartheta) \ln_q(x),
\widehat{Q} = 2iy(\sin_q(\vartheta))x \left[\frac{\vartheta}{\vartheta x}\right]_q,$$
(4.3)

we find

$$[\widehat{P}, \widehat{Q}] = 2y[\sin_q(\vartheta)]^2, \tag{4.4}$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

thus getting

$$e_q^{y\left(x\left[\frac{\vartheta}{\vartheta_\pi}\right]_q\right)^2} x^{i\sin_q(\vartheta)} = x^{i\sin_q(\vartheta)} e_q^{-y[\sin_q(\vartheta)]^2}. \tag{4.5}$$

Which is the generating function of a two-variable Bessel function, namely

$$x^{i\sin_q(\vartheta)}e_q^{-y[\sin_q(\vartheta)]^2} = \sum_{n=-\infty}^{\infty} e_q^{ix\vartheta}({}_hJ_n(x,y;q)).$$
 (4.6)

$$_{h}J_{n}(x,y;q) = \sum_{r=0}^{\infty} \frac{(-1)^{r}H_{n+2r}(\ln_{q}(x),y;q)}{2^{n+2r}[r]_{q}![n+r]_{q}!}.$$
 (4.7)

It is evident that we ended up with a Bessel type function generalizing those of Hermite nature discussed in ref. [8]. It is worth emphasizing that the above equations satisfy a partial differential equation of the type

$$\begin{cases}
\left[\frac{\partial}{\partial y}\right]_{q} \left({}_{h}J_{n}(x,y;q) \right) = \left(x \left[\frac{\partial}{\partial x}\right]_{q} \right)^{2} \left({}_{h}J_{n}(x,y;q) \right), \\
{}_{h}J_{n}(x,0;q) = J_{n}(\ln_{q}(x);q).
\end{cases} (4.8)$$

It is evident that the above considerations can be extended to any generating function of the type [3]

 $e^{iF(x)\sin_q(\vartheta)}$. (4.9)

Before concluding we will show how the combined use of integral transform and the previous formalism allows the derivation of further important relations. According to the identity [19]

$$e_q^{\lambda \widehat{P}^2} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2 + 2\xi\sqrt{\lambda}\widehat{P}} d_q \xi.$$
 (4.10)

we can easily conclude that the polynomials $h_n^{(2)}(x,y;q)$ can also be realized in terms of the integral representation

$$e_q^{y\left(p(x)\left[\frac{\partial}{\partial x}\right]_q\right)^2} [F(x)]^n = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2} [F(x) + 2\sqrt{y}\xi]^n d_q \xi.$$
 (4.11)

Going back to eq. (2.17) and specializing for m=2, the use of the above relations allows to state the following identity

$$\sum_{n=0}^{\infty} \frac{(-1)^n e_q^{-yn^2}}{[n]_q!} \ = \ \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e_q^{-\xi^2} e_q^{-\cos_q(2\sqrt{y\xi})} \cos_q(\sin_q(2\sqrt{y}\xi)) d_q \xi.$$

Finally since [7]

$$e_q^{-yd} = \frac{y}{2\sqrt{\pi}} \int_0^\infty \frac{1}{t\sqrt{t}} e_q^{-\frac{y^2}{4t}} e_q^{-d^2t} d_q t \tag{4.12}$$

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY-2014

ISSN 2278-5655

by replacing d with $\mathcal{T}_{\alpha q}^{\frac{1}{2}}$ and by using the previously discussed rules we find

$$e_q^{-y(\mathcal{T}_{x;q})^{\frac{1}{2}}} = \frac{y}{2\sqrt{\pi}} \int_0^\infty \frac{1}{t\sqrt{t}} e_q^{-\frac{y^2}{4t}} e_q^{-\langle \mathcal{T}_{x;q} \rangle t} d_q t$$

let us see the effects of $e_q^{-y(\mathcal{T}_{\pi;q})^{\frac{1}{2}}}$ on an ordinary function, we have

$$e_q^{-y(\mathcal{T}_{\pi;q})^{\frac{1}{2}}}f(x) = \frac{y}{2\sqrt{\pi}} \int_0^{\infty} \frac{1}{t\sqrt{t}} e_q^{-\frac{y^2}{4\epsilon}} e_q^{-t(\mathcal{T}_{\pi;q})} f(x) d_q t$$

or

$$e_q^{-y(\mathcal{T}_{\pi;q})^{\frac{1}{2}}}f(x) = \frac{y}{2\sqrt{\pi}} \int_0^\infty \frac{1}{t\sqrt{t}} e_q^{-\frac{y^2}{4t}} f(F^{-1}(F(x) - t)) d_q t. \tag{4.13}$$

Which realizes the transform providing the action of a fractional generalized shift operator on a given function, the validity of both (3.11) and (3.12) is limited to the case in which the integral converges.

Particular case: Taking the limit $q \mapsto 1$, the eqs. (4.1) to (4.13) give raise to the eqs. (15) to (26) due to Dattoli et al. [2].

References

- [1]. Appell, P.; Kampé de Fériet, J.; Fonctions hypergéométriques et hypersphériques. Polynômes d'Hermite, Gauthier-Villars, Paris, 1926.
- [2]. Asif, M.; q-Analogue of Exponential Operators and Difference Equations, Kyungpook Math. J. 53(2013), pp. 349-369
- [3]. Asif, M.; Gupta, Anju; Generalized Exponential Operators and Difference Equations, Italian journal of Pure and Applied Mathematics no. 30 (to appear).
- [4]. Asif, M.; Gupta, Anju; q-Analogue of the Operational Methods, Fractional Operators and Special Polynomials, communicated for the publication.
- [5]. Cigler J.; Operatormethoden für q-Identitaten. Monatshefte für Mathematik 88, (1979), 87-105.
- [6]. Dattoli, G.; Ricci, P.E.; Sacchetti, D.; Generalized shift operators and pseudopolynomials of fractional order Applied Mathematics and Computation 141 (2003) 215-224.
- [7]. Dattoli, G.; Gallardo, J.C.; Torre, A.; An algebraic point of view to operatorial methods in optics, Riv. Nuovo Cimento 11 (1988) 1-85

Peer-Reviewed Journal

Vol No III Issues III

JUNE-JULY- 2014

ISSN 2278-5655

- [8]. Dattoli, G.; Ottaviani, P. L.; Torre, A.; Vázquez, L.; Evolution operator equations: integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, Riv. Nuovo Cimento, 2 (1997), 1-133.
- [9]. Dattoli, G.; Levi, D.; Exponential operators and generalized difference equations, Riv. Nuovo Cimento B, 115 (2000), 653-662.
- [10]. Dattoli, G.; Ricci, P.E.; Cesarano, C.; Vázquez, L.; Fractional derivatives: integral representations and generalized polynomials, J. Concrete Appl. Math.2 (2004), no. 1, 59-66.
- [11]. Dattoli, G.; HermiteBessel and LaguerreBessel functions: A by-product of the monomiality principle, in: D. Cocolicchio, G. Dattoli, H.M. Srivastava (Eds.), Advanced Special Functions and Applications, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, 912 May 1999, Aracne Editrice, Rome, 2000, pp. 147-164.
- [12] Ernest, T.; The History of q- Calculus and a New Method, Licentiate Thesis, Department of Mathematics, Uppsala University, SE-75106 Uppsala, Sweden.
- [13]. Gasper, G.; Rahman, M.; Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990, 2004.
- [14]. Kac, V.; Cheung, P.; Quantum Calculus, New York, 2002.
- [15]. Khan, M. A.; Asif, M.; Shift Operators on the Base a(a > 0, ≠ 1) and Monomial Type Functions, International Transactions in Mathematical Sciences and Computer, July-December 2009, Volume 2, No. 2, pp. 453-462.
- [16]. Miller, K.S.; Ross, B.; An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [17]. Ricci, P.E.; Tecniche operatoriali e Funzioni speciali, Preprint 2001.
- [18]. Srivastava, H.M.; Manocha, H.L.; A Treatise on Generating Functions, Wiley, New York, 1984.
- [19]. Wilcox, R.M.; Exponential operators and parameter differentiation in quantum physics, J. Math. Phys. 8 (1967) 962-982.
- [20]. Witschel, W.; On Baker-Campbell-Hausdorff operator disentangling by similarity transformations, Phys. Lett. A, 111 (1985), 383-388.
- [21]. Wright, E.M.; The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940) 36-48.