

P
ag

e2
6

Aarhat Multidisciplinary

International Education

Research Journal (AMIERJ)

(Bi-Monthly)

 Peer-Reviewed Journal

Impact factor: 0.948

Chief-Editor:

Ubale Amol Baban

2014

30/11/2014

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e2
7

A SURVEY OF TECHNIQUES IN MINING SOFTWARE REPOSITORY

Dr.Bijendra Agrawal
1

Narendra R Patel
2

Abstract:

During the software development, Software developers do not perform software-engineering task. In

Software repository, source code is available and software developers use these repositories to support their

activities. The research discipline of mining software repositories (MSR) uses these extant to understand the

software system. So MSR brings together researchers and practitioners to consider methods of using data stored in

software repositories to further understanding of software development practices. The main objective of this survey

report is to define a research area in MSR and to discuss how MSR techniques are used.

Keywords: MSR, Source code.

I. Introduction

During the software development, Software developer do not perform software-

engineering task. Source code is one type of software repository from which software developers

extract valuable information like issue-tracking repositories [14] and online project-tracking

software [6], as well as formal documentation like specifications and manuals and informal

communications like emails [10]. The research discipline of mining software repositories (MSR)

Principal¹ Assistant Professor²

¹College Of Computer & Management Studies,Vadu Ta-Kadi Dist-Mehsana (Gujarat) India

²Shree Madhav Insti. Of Comp. & I.T Surat(Gujarat)India

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e2
8

 uses these extant to understand the software system. So MSR brings together researchers and

practitioners to consider methods of using data stored in software repositories to further

understanding of software development practices. The main objective of this survey report is to

define a research area in MSR and to discuss how MSR techniques are used.

 2. Overview of MSR

The purpose of mining software repositories is to use the wealth of information available

which is available in software repositories. These information can be very much useful in the

software-development process. Information such as issue-tracking repositories, source code, and

documents, relationships can be identified, and knowledge of software processes and

characteristics can be acquired. This knowledge can be useful in development of system so we

improve the performance.

2.1. MSR Data Sources.

Source code is commonly and easily available source of data for MSR. This source code

is commonly found in repositories such as Sourceforge, Google Code, Subversion [23], CVS

[22], Git [26].

Source like bug repository, mailing list and communication links helps in the analysis of

system. So to understand and to know system these information is useful to anyone who related

with system.

2.2. Areas of MSR.

 (1) Identifying and Predicting Software Quality

 (2) Identifier Analysis and Traceability

 (3) Clone Detection

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e2
9

 (4) Process Improvement and Software Evolution

 (5) Social Aspects in Software Development

3. Identifying and Predicting Software Quality

MSR is used to identify quality issues in a software system. MSR develops prediction

models to determine how many defects are in the software, and to determine which modules

have defects.

Most of the recent literature in software defect analysis examines if there is a correlation

between a particular phenomenon, such as a software complexity metric, and defect count, and

examines if that phenomenon can be used to predict defect count or defect prone modules.

Usually, statistical models are used to identify failure-prone files though some techniques are

applicable to individual lines of code or to modules. Zimmermann et al. used the categories

\complexity metrics" and \historical data"; complexity metrics included dependency calculations,

and historical data in this context included code churn. We use the following categories to

broadly classify the current literature in MSR failure counting and failure prediction.

(1) Software metrics, which includes complexity metrics and dependencies

(2) Software evolution, which examines repository histories for changes

(3) Social factors, which examines social interactions, often in relation to technical aspects

As an introduction to the field of defect prediction, Zimmermann et al. provides an

overview on preparing software repositories for the analysis of defects. Nagappan et al. also

provide a great description of the techniques commonly employed in defect counting and

prediction.

3.1. Software Metrics and Quality.

 A number of classic metrics have been used extensively for failure prediction, primarily

Halstead's complexity measures and McCabe cyclomatic complexity. McCabe tends to be a

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
0

relatively good predictor , though recently software metrics have been used in conjunction with

other factors. Gall et al. [25] described logical coupling as one such dependency that is

constructed by grouping the files together that comprise a bug or feature change to the software.

Cataldo et al. [16] proposed workow dependency as a socio-technical dependency that occurs

when an issue in the issue-tracking system is reassigned from one developer to another.

Zimmermann and Nagappan mapped software dependencies as a dependency graph and applied

social network analysis measurements to Windows Server 2003. Nguyen et al. performed a

replication of this analysis on Eclipse. Cataldo et al. [16] compared different representations of a

dependency to identify failure-prone files. They examined syntactic dependencies based on call

graphs; logical dependencies based on relationships between files. SLOCCount [17, 16], CODD

[2], tools for metrics estimation (which include algorithms to calculate Halstead’s[8] and

McCabe’s[12] complexity measures), raw count of file sizes (using for instance the wc utility).

3.2. Software Evolution and Quality.

 Software evolution techniques use historical data, usually code changes, to predict

defects that may occur later in the project. Nagappan and Ball used code churn metrics for

predicting defect density in Windows Server 2003. Hassan and Holt proposed the use of a

\cache" from the operating system discipline in defect prediction. This was later expanded into

the FixCache algorithm.

3.3. Social Factors and Quality.

Cataldo et al. identified a correlation between an alignment between social interaction

and software dependencies, called socio-technical congruence, and defect repair times [17].

Nagappan et al. identified that organizational aspects could predict which binaries were prone to

post-release failures. A follow-up study on Windows Vista by Pinzger et al. examined the

relationship between developers that contributed to the same code module, and determined that

social network centrality measures were able to predict failure-prone binaries Bird et al. [12]

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
1

examined socio-technical networks, which are networks that represent both contributions and

dependencies among developers and binaries. Social network analysis in MSR led to Wolf et al.

describing a general technique to apply social networks in software engineering. Cataldo et al.

[15] investigated feature changes from a repository and identified that global software

engineering in their context was the largest effect contributing to defects.

4. Identifier Analysis and Traceability

Traceability is an important problem in software engineering. Enabling good traceability

improves maintenance and program comprehension. One way to approach this problem is

through identifier analysis. Two techniques, CamelCase and Samurai, are commonly used for

identifier splitting: CamelCase [2], which splits identifiers using underscores, numbers, and

alphabetical case changes; and Samurai [21], which further uses substrings to refine identifiers.

Both techniques have advantages but it has been identified that they are extremely similar in

functional performance [20]. Arnaoudova et al. [5] used identifiers as a basis for their defect

prediction model.

5. Clone Detection

Over the years different techniques are proposed to locate clones or fragments which

share the same code but may differ in the naming of identifiers. Ducasse for example, proposes a

detection technique to locate clones containing a certain amount of identical lines. Baker on the

other hand focusses on code fragments in which identifiers, which are likely to change during the

duplication process, may differ as long as there is a one to one mapping between the identifiers.

Clone detection is the investigation of duplicated sections of source code, usually through the

copy and paste function in an editor. Clone detection started to become of interest since it was

discovered that 10-15% of code in a software system was copied and pasted [8]. If there is a

defect in reused code fragments, then _xing that defect can be problematic. Frequent cloning can

also suggest the need for the creation of subroutines that use the cloned fragments. Cloning has

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
2

received a lot of attention in source code, with different types of cloning being used such as

token-based cloning and abstract syntax tree based cloning [9]. Al-Ekram et al. [1] discovered

that source code cloning for the purpose of reuse was not prominent in a number of open-source

text editors. Early work by Diessenboeck et al. [19] applied a graph-based algorithm to detect

clones.

A parameterized clone detection technique as CCFinder is used. Due to their focus on the

detection of similar code fragments, parameterized clone detection techniques are expected to

produce the most suitable FACs.CCFinder is a token based detection technique which searches a

specially constructed tree for maximal matches. Due to its token based nature, the detection

process is not influenced by the code layout. Mockus used word frequency analysis of log

messages to not only identify the purpose of changes, but relate it to change size and time

between changes as well. Mockus and De Hondt, who both studied change log information, state

that a textual description of a change is necessary to understand the real motivation behind a

change.

6. Process Improvement and Software Evolution

MSR can identify how source code changes over time during a process. triage a bug [3],

identifying the trends of code commits and determining how to file a good bug report. Ratzinger,

et al. identified classification techniques that were able to predict refactoring activity. Michael

Fischer et al. proposed a heuristic to detect these revisions [8]. Their approach is restricted to

merges to the main branch, but it is straightforward to apply it to other branches. Robles, et al.

used source code extraction to examine changes over time Ernst and Mylopoulos examined

mailing lists to determine if requirement-related discussions became more prominent as software

matures,

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
3

7. Social Aspects in Software Development

 Bird et al. [13] identified that many open-source projects were grouped into

\communities", which meant that multiple small groups of developers tended to communicate;

his technique allows the identification of community structure in software development projects.

Conclusion:

Using the survey of MSR techniques we can easily choose the best techniques to know

and understand the system. There are a number of common techniques through research goals

can be achieved, but techniques are applied with some assumption. The analysis techniques used

for source code should be applicable to find facts about the system.

References

[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning by accident: an empirical study of

source code cloning across software systems. In Empirical Software

 Engineering, 2005. 2005 International Symposium on, page 10 pp., nov. 2005.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability

links between code and documentation. Software Engineering

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug?

[4] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors and omissions

in software repositories.

[5] V. Arnaoudova, L. Eshkevari, R. Oliveto, Physical and conceptual identifier dispersion:

Measures and relation to fault proneness.

[6] Atlassian. Bug, Issue, and Project Tracking for Software Development - JIRA [online].

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
4

[7] Alberto Bacchelli, Michele Lanza, and Marco D'Ambros. Miler: a toolset for exploring email

data.

[8] B.S. Baker. On _nding duplication and near-duplication in large software systems.

[9] I.D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier. Clone detection using abstract

syntax trees.

[10] Christian Bird, Alex Gourley, and Anand Swaminathan. Mining email social networks in

postgres. In Mining Software Repositories Workshop 2006, ICSE, 2006.

[11] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Brendan

Murphy. Does Distributed Development Affect Software Quality? An Empirical

Case Study of Windows Vista.

[12] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and Premkumar

Devanbu. Putting it all together: Using socio-technical networks to predict

failures.

[13] Christian Bird, David Pattison, Raissa D'Souza, Vladimir Filkov, and Premkumar

 Devanbu. Latent social structure in open source projects.

[14] Bugzilla.org. Home :: Bugzilla [online]. 2011. Available from: http://www.bugzilla.org/

[15] Marcelo Cataldo and James D. Herbsleb. Factors leading to integration failures in global

featureoriented development: an empirical analysis.

[16] Marcelo Cataldo, Audris Mockus, Je_rey A. Roberts, and James D. Herbsleb. Software

dependencies, work dependencies, and their impact on failures.

[17] Barth_el_emy Dagenais and Martin P. Robillard. Creating and evolving developer

documentation: understanding the decisions of open source contributors.

Aarhat Multidisciplinary International Education
Research Journal (AMIERJ)

(Bi-Monthly) Peer-Reviewed Journal Vol No III Issues V

ISSN 2278-5655

www.aarhat.com Oct-Nov 2014 Impact Factor 0.948

P
ag

e3
5

[18] Florian Deissenboeck, Benjamin Hummel, Elmar J• urgens, Bernhard Sch• atz, Stefan

Wagner, JeanFran_cois Girard, and Stefan Teuchert. Clone detection in

automotive model-based development.

[19] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. Clustering support

for static concept location in source code.

[20] Eric Enslen, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Mining source code to

automatically split identi_ers for software analysis.

[21] Free Software Foundation. CVS - Open Source Version Control [online]. 2006 Available

from: http: //www.nongnu.org/cvs/

[22] The Apache Software Foundation. Apache subversion [online]. 2011. Available from:

 http:// subversion.apache.org

[23] Robert France and Bernhard Rumpe. Model-driven development of complex software: A

research roadmap. In 2007

[24] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product release

history.

[25] git. Git - Fast Version Control System [online]. 2011. Available from: http://git-scm.com

Copyrights @ Dr.Bijendra Agrawal and Narendra R Patel ..This is an open access peer

reviewed article distributed under the creative common attribution license which

permits unrestricted use, distribution and reproduction in any medium, provide the

original work is cited.

http://git-scm.com/

