

IMPACT OF TECHNOLOGY ON TRANSLATION AND ITS FUTURE IN THE DIGITAL AGE
*** Dr. Mrs. Vaishali Abhijit Sarang**

* Assistant Professor and Head, Department of History, D. D. Shinde Sarkar, College, Kolhapur.

Introduction:

Translation is the process of transferring meaning from one language into another, not just word by word but also by carrying cultural, social, and contextual aspects. In today's globalized world, translation is important for diplomacy, international trade, science, literature, media, and education. It plays vital role in cultures to interact, share knowledge, and preserve diversity. For instance, due to the translation of many holy books and the work of saints, social reformers it reaches wider audiences. It becomes easy to spread our ideas or important information at the each corner of the society or the world only through translation. Similarly, multinational companies like Apple, Samsung, and Netflix rely on translation and localization to reach

consumers in different cultural markets. In education field, research and scientific inventions also it plays a crucial role. In previous periods translation work depends on the talent and skill of the translators. It had limitations. Now days we found different digital facilities to translate the work. It reduces the skill and opportunities to the human being. On the other hand it is the big challenge for humans. So we can say that it is nothing but the struggle between Men vs. machine in the age of digitalization. So the question is whether the digital technologies are ban or boon to the society? Hence to discuss the same issue the researcher has selected the topic- Impact of Technology on Translation and its future in the digital age.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Objectives:

1. To study what is translation? What is its importance?
2. This research paper aims to examine how digital tools are reshaping translation in the 21st century. While technology has improved speed, cost-efficiency, and accessibility, it has also raised questions about **quality, ethics, employment, and cultural sensitivity**.
3. The paper investigates both the opportunities such as AI-human collaboration, real-time speech translation, preservation of endangered languages and challenges like untranslatable cultural elements, over-reliance on machines, ethical dilemmas. Ultimately, the purpose is to understand whether

digital tools will replace human translators or transform their role into that of *cultural mediators and post-editors*.

4. **Exploring how digital tools are shaping the future of translation.**

Evolution and impact of technology on translation practices: Before the digital era, translation was performed exclusively by humans. Translators relied on their linguistic knowledge, dictionaries, and cultural understanding to transfer meaning across languages. This process was often time-consuming, labour-intensive, and highly dependent on the translator's expertise. But it has some limitations. It lacked speed and scalability. For international organizations e.g., UN, where multiple

languages were involved, translation required large teams and still consumed significant time.¹ The digital revolution has transformed translation from a purely human intellectual activity into a hybrid field where technology plays a central role. Traditional translation methods have been supplemented or even replaced by **Computer-Assisted Translation (CAT)** tools, **Machine Translation (MT)**, and **Neural Machine Translation (NMT)** systems. CAT tools like **SDL Trados** or **MemoQ** provide translators with *translation memories* (databases storing previously translated phrases), increasing speed of words instantly, offering accessibility to global users. Global organizations (UN, EU, WHO) increasingly use AI-powered translation systems for multilingual communication and consistency. MT tools such as **Google Translate** and **DeepL** can now process millions.²

For example, during the COVID-19 pandemic, real-time AI translation enabled the fast circulation of health guidelines worldwide, saving lives by bridging language barriers.

Computer-Assisted Translation (CAT) Tools: CAT tools emerged in the late 20th century to support professional translators rather than replace them. These tools help maintain **consistency, efficiency, and accuracy** by storing and reusing previously translated content.

SDL Trados Studio is one of the most widely used CAT tools, offering *Translation Memory (TM)* and integration with terminology management. **MemoQ** has known for user-friendliness and collaboration features, popular among freelancers and translation agencies. While **Wordfast** is more affordable CAT tool that integrates easily with Microsoft Word.³

Translation Memory (TM) is a database that stores previously translated sentences/segments. When the same or similar sentences appear in new texts, the tool suggests them automatically. E.g. If “Climate change

is a global challenge” has already been translated, the software will recall it when the same phrase reappears.

Terminology Databases is glossaries of specialized terms used to ensure consistency, especially in technical, legal, or medical texts. E.g. In EU legal documents, the term “*European Union Directive*” must always be translated uniformly across languages.⁴ Machine Translation (MT) represents a major leap in translation technology. Unlike CAT tools, which assist humans, MT attempts to translate entire texts automatically without direct human involvement. The technology has evolved in **three main phases**:

1. Rule based MT: It is based on linguistic rules, grammar, and bilingual dictionaries. Produces rigid, often unnatural translations because it lacks context.⁵
2. Statistical MT: SMT emerged in the 1990s, based on analysing large bilingual corpora. It uses probability to predict the most likely translation of a word or phrase. It produces better results than RBMT but still struggles with idioms and long sentences. e.g. The earlier version of **Google Translate (2006–2016)** used SMT.⁶
3. Neural Machine Translation (NMT): It is the latest development, based on Artificial Neural Networks (deep learning). It translates whole sentences rather than word-by-word, capturing context and meaning. It produces more fluent, natural translations with fewer errors. e.g. **Google Translate (post-2016)**, **DeepL Translator** (launched 2017), which is known for handling idiomatic expressions more accurately.⁷

New trends of translation in the digital age:

1. Artificial Intelligence (AI), particularly **Neural Machine Translation (NMT)**, is the biggest breakthrough in modern translation. Unlike rule-based or statistical systems, NMT translates **entire sentences** by analysing context, syntax, and semantics. This leads to greater **fluency**,

naturalness, and contextual accuracy. It improves contextual accuracy & fluency. Earlier systems translated word-for-word, often producing awkward sentences. NMT considers the entire sentence and sometimes the broader paragraph. e. g. Since 2016, Google Translate uses NMT, which improved accuracy by nearly **60%** compared to SMT.⁸

2. Despite NMT's progress, machine translations still contain errors in **nuance, tone, and cultural references**. This creates a new role for human translators: **Post-Editing Machine Translation (PEMT)**. PEMT is the process where human translators review and correct machine outputs for accuracy, style, and cultural fit. **When we consider the role of human translators we found that it ensures cultural sensitivity** e.g., *gender-inclusive language, humour, or politeness forms*. It refines style for target audience i.e. journalistic, legal, and literary. e. g. In medical translations, a wrong word can endanger lives. Human post-editors refine machine translations to ensure accuracy in documents like drug prescriptions or patient instructions.⁹

3. Translation in the digital age is not just about **language**, but about **culture and usability**. This is where **localization** comes in. It adapting content not only linguistically but also culturally (dates, units, humour, visuals). **Globalization** preparing products for enters multiple cultural/linguistic markets at once. **Here we can see** the role of software, apps, websites, video games, e-commerce platforms. Microsoft Windows exists in over 100 languages, each localized with culturally relevant help menus and formats. **Netflix** offers subtitles and dubbing in **30+ languages**, adapting humour and cultural references. For instance, jokes in “*Friends*” are adapted differently in Spanish and Japanese to maintain humour in local context.¹⁰

4. The digital era has also given rise to **community-driven, volunteer-based translation**, known as **crowd sourcing**. A large group of non-professional volunteers collaborates online to translate and review content. Its advantages are faster translations, covering multiple languages simultaneously, increases accessibility of global knowledge and media. e.g. on **Wikipedia** volunteers translate millions of articles into 300+ languages.¹¹

Digital age and the challenges in translation:

In the age of digitalization and globalization there are some challenges in the field of translation as the importance and use of digital tools developed very fast. Some of them are as follows:

Regarding quality & accuracy issues cultural nuances, idioms, humour often mistranslated. Even though Neural Machine Translation (NMT) has revolutionized the industry, it still struggles with **context, style, and cultural depth**. Also machines often fail to capture subtleties like irony, double meanings, and culturally bound expressions. A mistranslation in **medical instructions** (e.g., dosage) or **legal contracts** (e.g., “shall” vs. “may”) can have serious consequences. As in 2017, a mistranslated phrase in a medical instruction manual caused confusion in a hospital in Spain, leading to patient safety concerns.¹²

Regarding Ethical Issues translator has no job security means fear of being replaced by AI. The growing use of AI and machine translation brings serious **ethical dilemmas** to the profession. Regarding copyright and intellectual property in machine-assisted translations there is a question that who “owns” a machine-assisted translation the human editor, the machines developers, or the client?¹³

Considering data and privacy digital translation tools rely on massive amounts of **user-submitted data**, which poses risks for confidentiality and security. When companies upload documents into free online

MT tools (Google Translate, Bing Translator), the text may be stored, analysed, or shared by the service provider. This is dangerous for **corporate contracts, government communications, or patient data**.¹⁴

The role of human in the age of AI- **Considering speed & cost-effectiveness** AI systems like Google NMT or DeepL can translate millions of words in seconds at little or no cost. This efficiency is crucial for **bulk content** (technical manuals, product descriptions, and social media). **Amazon** uses AI translation to make product listings instantly available across multiple regions. **Regarding cultural sensitivity, creativity & contextual judgment** machines often fail to capture **tone, humour, irony, and double meanings**, while humans can adapt the message for cultural appropriateness. In diplomacy or literature, human translators act as **cultural negotiators** who preserve subtle meaning and avoid political or cultural misunderstandings.¹⁵

Future Translator Skills:

Translators must master **CAT tools** (Trados, MemoQ, Wordfast) and **post-editing of MT output (PEMT)**. Future translators will act less as “manual word changers” and more as **editors, evaluators, and quality controllers** of machine output. Specialized translation (law, medicine, technology, literature) requires subject expertise. Legal translators must know the difference between **common law and civil law systems** to adapt terminology. Translators must work with international teams, balancing client needs and cultural expectations.¹⁶

Future Directions- The most promising future lies not in *AI replacing humans*, but in **AI complementing human expertise**. Machine Translation (MT) can generate **first drafts** quickly, especially for technical or repetitive texts, while human translators refine the style, accuracy, and cultural nuance. This workflow is called **Post-Editing of Machine Translation**

(PEMT). Devices and applications now provide **instantaneous speech translation**, bridging language gaps in real-time communication. This is crucial for travel, business negotiations, and global conferences.¹⁷ The future of translation will integrate **speech, text, and images** into a seamless system. **Multimodal translation** allows users to scan, listen, and translate simultaneously.¹⁸

In case of preserving Endangered Languages over **40% of the world's 7,000+ languages** are endangered (UNESCO, 2019). Digital tools play a key role in documenting, archiving, and translating these languages to prevent extinction.¹⁹ **In term of giving training then generation of translators** as AI tools reshape translation, education must focus on **digital literacy, localization skills, and cultural mediation**. Future translators need to become experts in **technology-assisted workflows**, rather than fearing automation.²⁰

Conclusion:

In the 21st century, translation stands at the crossroads of human creativity and artificial intelligence. The rise of digital tools, machine translation, and AI-driven language models has revolutionized the way we communicate across cultures. What was once a task requiring years of linguistic mastery can now, in seconds, be performed by algorithms like Google Translate, DeepL, and ChatGPT. Yet, the debate continues: can machines truly capture cultural nuance, emotional tone, and contextual meaning as effectively as human translators? This paper explores the evolving relationship between man and machine in the field of translation, examining the strengths and limitations of both. It argues that the future of translation is not a simple replacement of humans by machines but rather a synergy where technology accelerates efficiency and accessibility, while human expertise ensures accuracy, cultural sensitivity, and creativity.

References and Footnotes:

1. Bassnett, Susan, *Translation Studies*, Routledge, 4th ed., 2014, pp. 12–18.
2. Robinson, Douglas, *Becoming a Translator*, Routledge, 3rd ed., 2012, pp. 25–30.
3. Hutchins, John. *Machine Translation: Past, Present, Future*, Ellis Horwood, 1986, pp. 5–10.
4. Koehn, Philipp, *Neural Machine Translation*, Cambridge University Press, 2020, pp. 2–8.
5. Pym, Anthony, *Exploring Translation Theories*, Routledge, 2nd ed., 2014, pp. 145–152. O'Hagan, Minako, and David Ashworth, *Translation-Mediated Communication in a Digital World*, Multilingual Matters, 2002, pp. 20–28.
6. Bowker, Lynne, *Computer-Aided Translation Technology: A Practical Introduction*. University of Ottawa Press, 2002, pp. 34–45.
7. Austermühl, Frank, *Electronic Tools for Translators*, Routledge, 2001, pp. 56–63.
8. Ibid; Hutchins, John, 1986, pp. 45–50.
9. Koehn, Philipp, *Statistical Machine Translation*, Cambridge University Press, 2010, pp. 21–28.
10. Ibid; Koehn, Philipp, *Neural Machine Translation*, pp. 5–12
11. Ibid; *Neural Machine Translation*, pp. 45–50.
12. Dunne, Keiran J., and Elena S. Dunne, *Translation and Localization Project Management*, John Benjamins, 2011, pp. 95–103.
13. O'Brien, Sharon, *Post-Editing of Machine Translation: Processes and Applications*, Cambridge Scholars Publishing, 2011, pp. 17–24.
14. Esselink, Bert, *A Practical Guide to Localization*, John Benjamins, 2000, pp. 34–42.
15. O'Hagan, Minako, *Crowdsourcing and Translation: A Primer*, Routledge, 2019, pp. 10–16
16. Jiménez-Crespo, Miguel A., *Translation and Web Localization*, Routledge, 2013, pp. 77–82.
17. Melby, Alan K., and Terry Warner, *The Possibility of Language: A Discussion of the Nature of Translation and the Nature of Reality*. John Benjamins, 1995, pp. 122–127. Ibid; *Neural Machine Translation*, pp. 83–90.
18. Cronin, Michael, *Translation in the Digital Age*, Routledge, 2013, pp. 54–61. Ibid; Pym, Anthony, pp. 211–218.
19. Moorkens, Joss, "Under Pressure: Translation in Times of Austerity and Technology," *Perspectives: Studies in Translatology*, vol. 25, no. 3, 2017, pp. 464–477.
20. European Data Protection Board, *Guidelines on Data Protection in Machine Translation*, 2019, pp. 9–14.
21. Venuti, Lawrence, *The Translator's Invisibility*, Routledge, 2012, pp. 19–23.
22. Hutchins, John, *Machine Translation: Past, Present, Future*, Ellis Horwood, 1986, pp. 57–63.
23. Kelly, Nataley Found in Translation, Penguin, 2012, pp. 183–190.
24. Ibid; O'Hagan, Minako ,pp. 211–219
25. Crystal, David, *Language Death*, Cambridge University Press, 2000, pp. 57–61. UNESCO *Atlas of the World's Languages in Danger* (2019).
26. Pym, Anthony, *Training Translators: Programmes, Curricula, Practices*, John Benjamins, 2019, pp. 102–110.

Cite This Article: Dr. Mrs. Sarang V.A. (2025). *Impact of Technology on Translation and its future in the digital age*. In **Aarhat Multidisciplinary International Education Research Journal**: Vol. XIV (Number VI, pp. 73–77). Doi: <https://doi.org/10.5281/zenodo.18059890>